| 注册
首页|期刊导航|中国计量大学学报|一种改进的残差网络宫颈癌细胞图像识别方法

一种改进的残差网络宫颈癌细胞图像识别方法

谢欣 夏哲雷

中国计量大学学报2018,Vol.29Issue(4):452-456,5.
中国计量大学学报2018,Vol.29Issue(4):452-456,5.DOI:10.3969/j.issn.2096-2835.2018.04.017

一种改进的残差网络宫颈癌细胞图像识别方法

Establishment of an improved residual network method for recognition of cervical cancer cell image

谢欣 1夏哲雷1

作者信息

  • 1. 中国计量大学 信息工程学院, 浙江 杭州 310018
  • 折叠

摘要

Abstract

An improved residual network (ResNet) algorithm was proposed to reduce the false negative rate of cervical cancer cell image recognition in this paper.The ResNet algorithm increased the weight of the cross entropy cost function to establish the weight matrix according to the cervical cells of different degrees of lesion.The output of the false negative category was weighted to reduce false negative judgment.The experimental results showed that the algorithm classification is stable for different cervical cell image data sets.Compared with the traditional image classification algorithms, the improved cross entropy cost function algorithm can effectively reduce the false negative rate of cervical cancer cell image recognition.

关键词

残差网络/图像识别/交叉熵代价函数/宫颈癌细胞/假阴性率

Key words

residual network/image recognition/cross entropy cost function algorithm/cervical cancer cell/false negative

分类

信息技术与安全科学

引用本文复制引用

谢欣,夏哲雷..一种改进的残差网络宫颈癌细胞图像识别方法[J].中国计量大学学报,2018,29(4):452-456,5.

基金项目

浙江省自然科学基金项目(No.LY12F01011) (No.LY12F01011)

中国计量大学学报

OACHSSCD

2096-2835

访问量0
|
下载量0
段落导航相关论文