| 注册
首页|期刊导航|中国机械工程|深度置信网络在齿轮故障诊断中的应用

深度置信网络在齿轮故障诊断中的应用

陈保家 刘浩涛 徐超 陈法法 肖文荣 赵春华

中国机械工程2019,Vol.30Issue(2):205-211,7.
中国机械工程2019,Vol.30Issue(2):205-211,7.DOI:10.3969/j.issn.1004-132X.2019.02.011

深度置信网络在齿轮故障诊断中的应用

Gear Fault Diagnosis Based on DBNS

陈保家 1刘浩涛 1徐超 2陈法法 1肖文荣 1赵春华1

作者信息

  • 1. 湖北省水电机械设备设计与维护重点实验室(三峡大学), 宜昌, 443002
  • 2. 湖北特种设备检验检测研究院宜昌分院, 宜昌, 443002
  • 折叠

摘要

Abstract

Aiming at the problems of gears and other parts in a gear transmission system that were prone to ault or failure, this paper presented a fault diagnosis method for gear transmissions based on deep learning theory.Firstly, the powerful feature self-extraction ability of DBNs was used to extract the features of the vibration signals of the gear transmission systems.Then the fault signals were identified by the complex map representation capability of DBNs.The diagnosis examples show that if the original time-domain signals of gear vibration are not extracted, the correct recognition rate may only reach about 60% when directly using DBNs to diagnose.If a simple Fourier transform is applied to the time domain signals, then DBNs may be used to diagnose the frequency spectrum of the processed vibration signals.The accuracy rate may reach 99.7%, which confirms the simplicity and effectiveness of the fault diagnosis method described herein.

关键词

齿轮传动/特征提取/深度置信网络/故障诊断

Key words

gear transmission/feature extraction/deep belief network (DBN)/fault diagnosis

分类

机械制造

引用本文复制引用

陈保家,刘浩涛,徐超,陈法法,肖文荣,赵春华..深度置信网络在齿轮故障诊断中的应用[J].中国机械工程,2019,30(2):205-211,7.

基金项目

湖北省重点实验室开放基金资助项目(2018KJX03,2018KJX07,2018KJX08) (2018KJX03,2018KJX07,2018KJX08)

湖北省自然科学基金资助项目(2018CFB671) (2018CFB671)

湖北省质量技术监督局科技计划资助项目(Hbj-kj201714) (Hbj-kj201714)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量6
|
下载量0
段落导航相关论文