| 注册
首页|期刊导航|中国机械工程|基于K-奇异值分解和层次化分块正交匹配算法的滚动轴承故障诊断

基于K-奇异值分解和层次化分块正交匹配算法的滚动轴承故障诊断

张文颢 李永健 张卫华

中国机械工程2019,Vol.30Issue(4):406-412,7.
中国机械工程2019,Vol.30Issue(4):406-412,7.DOI:10.3969/j.issn.1004-132X.2019.04.005

基于K-奇异值分解和层次化分块正交匹配算法的滚动轴承故障诊断

Bearing Fault Diagnosis Based on K-SVD and HBW-OOMP

张文颢 1李永健 2张卫华3

作者信息

  • 1. 西南交通大学牵引动力国家重点实验室, 成都, 610031
  • 2. 五邑大学轨道交通学院, 江门, 529020
  • 3. 西华大学汽车测控与安全四川省重点实验室, 成都, 610039
  • 折叠

摘要

Abstract

A new method for fault diagnosis of bearings was presented based on K-SVD and HBWOOMP.Firstly, K-SVD dictionary training algorithm was utilized to construct a redundant dictionary containing impulsive components and the disadvantages of less adaptability of fixed structure dictionary were overcome.Then, HBW-OOMP algorithm was employed in selecting the best atom and solving the sparse coefficients.The signals were decomposed adaptively with the maximum principle of the envelop spectrum kurtosis.The fault features were extracted by the proposed method from simulated and experimental signals respectively.The results show that the method may achieve the extraction of impulsive components from strong noise, which demonstrates the effectiveness and practicability.

关键词

稀疏表示/K-奇异值分解/层次化分块正交匹配/块处理/包络谱峭度

Key words

sparse representation/K singular value decomposition (K-SVD)/hierarchized block wise optimized orthogonal matching pursuit (HBW-OOMP)/block process/envelop spectrum kurtosis

分类

交通工程

引用本文复制引用

张文颢,李永健,张卫华..基于K-奇异值分解和层次化分块正交匹配算法的滚动轴承故障诊断[J].中国机械工程,2019,30(4):406-412,7.

基金项目

国家重点研发计划资助项目(2016YFB1200401) (2016YFB1200401)

国家科技支撑计划资助项目(2015BAG19B02) (2015BAG19B02)

汽车测控与安全四川省重点实验室开放课题资助项目(szjj2018-132) (szjj2018-132)

江门市基础与理论科学研究类科技计划资助项目(2018JC01005) (2018JC01005)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量2
|
下载量0
段落导航相关论文