| 注册
首页|期刊导航|计算机工程与应用|改进模糊划分聚类的协同过滤推荐算法

改进模糊划分聚类的协同过滤推荐算法

苏庆 章静芳 林正鑫 李小妹 蔡昭权 曾永安

计算机工程与应用2019,Vol.55Issue(5):118-123,6.
计算机工程与应用2019,Vol.55Issue(5):118-123,6.DOI:10.3778/j.issn.1002-8331.1804-0318

改进模糊划分聚类的协同过滤推荐算法

Collaborative Filtering Recommendation Algorithm Based on Improved Fuzzy Partition Clustering

苏庆 1章静芳 1林正鑫 1李小妹 1蔡昭权 2曾永安1

作者信息

  • 1. 广东工业大学 计算机学院,广州 510006
  • 2. 惠州学院 计算机科学与技术系,广东 惠州 516007
  • 折叠

摘要

Abstract

The traditional Collaborative Filtering(CF)recommendation algorithm has the defects of sparse score matrix, weak extensibility and low recommendation accuracy. A collaborative filtering recommendation algorithm(GIFP-CCF+) is proposed to improve the fuzzy partition clustering. In the traditional calculation method based on modified cosine similarity, the time-difference factor, hot-item weight factor and cold-item weight factor are introduced to improve the similarity calculation results. At the same time, the GIFP-FCM algorithm which improves the fuzzy partition is introduced to form a class of items with similar attributes, construct index matrix, and base on the index. The similarity between items finds the nearest neighbor recommendation of the project, thereby improving the accuracy of the Collaborative Filtering algorithm(CF). By comparing with Kmeans-CF, FCM-CF and GIFP-CCF algorithms, it is proved that the GIFP-CCF+algorithm has some advantages in recommendation result and recommendation precision.

关键词

推荐系统技术/协同过滤/改进模糊划分/模糊C均值聚类

Key words

recommender system/ collaborative filtering/ improved fuzzy partition/ fuzzy C means clustering

分类

信息技术与安全科学

引用本文复制引用

苏庆,章静芳,林正鑫,李小妹,蔡昭权,曾永安..改进模糊划分聚类的协同过滤推荐算法[J].计算机工程与应用,2019,55(5):118-123,6.

基金项目

国家自然科学基金(No.61303079). (No.61303079)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文