| 注册
首页|期刊导航|计算机工程与应用|一种解决非光滑伪凸优化问题的新型神经网络

一种解决非光滑伪凸优化问题的新型神经网络

喻昕 伍灵贞 汪炎林

计算机工程与应用2019,Vol.55Issue(12):37-43,7.
计算机工程与应用2019,Vol.55Issue(12):37-43,7.DOI:10.3778/j.issn.1002-8331.1902-0116

一种解决非光滑伪凸优化问题的新型神经网络

New Neural Network for Solving Nonsmooth Pseudoconvex Optimization Problems

喻昕 1伍灵贞 1汪炎林1

作者信息

  • 1. 广西大学 计算机与电子信息学院,南宁 530004
  • 折叠

摘要

Abstract

Aiming at the nonsmooth pseudoconvex optimization problem with inequality constraints, a new recurrent neu-ral network based on differential inclusion theory is proposed. According to the objective function and constraints, a penalty function is designed, which changes with the change of the state vector, so that the state vector of the neural network always moves in the direction of the feasible region and ensures that the state vector of the neural network can be in finite time. It enters the feasible region and converges to the optimal solution of the original optimization problem. Finally, two simula-tion experiments are used to verify the validity and accuracy of the neural network. Compared with the existing neural net-work, it is a new type of neural network model. The model has simple structure. It does not need to calculate the exact pen-alty factor, and most importantly, and it also does not need the bounded feasible region.

关键词

非光滑伪凸函数/神经网络/收敛/优化问题

Key words

nonsmooth pseudoconvex functions/ neural networks/ convergence/ optimization problems

分类

信息技术与安全科学

引用本文复制引用

喻昕,伍灵贞,汪炎林..一种解决非光滑伪凸优化问题的新型神经网络[J].计算机工程与应用,2019,55(12):37-43,7.

基金项目

国家自然科学基金(No.61862004,No.61462006). (No.61862004,No.61462006)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文