| 注册
首页|期刊导航|计算机工程与应用|铝电解关键指标预测方法的研究与应用

铝电解关键指标预测方法的研究与应用

陈勇 周晓锋 李帅

计算机工程与应用2019,Vol.55Issue(12):250-258,9.
计算机工程与应用2019,Vol.55Issue(12):250-258,9.DOI:10.3778/j.issn.1002-8331.1712-0175

铝电解关键指标预测方法的研究与应用

Research and Application of Prediction Method for Key Indexes of Aluminum Electrolysis

陈勇 1周晓锋 2李帅3

作者信息

  • 1. 中国科学院大学,北京 100049
  • 2. 中国科学院 沈阳自动化研究所,沈阳 110016
  • 3. 中国科学院 网络化控制系统重点实验室,沈阳 110016
  • 折叠

摘要

Abstract

This paper presents a strategy to maintain the stability of aluminum reduction cells through the data mining and modeling of the aluminum factory in order to maintain the continuity of aluminum electrolytic production and ensure the stability of energy consumption and the stability of energy consumption. Firstly, de-noising for data. In view of the unknown data distribution characteristics of aluminum plants, a fuzzy clustering method without parameter adaptation is proposed, and the number and cluster centers of clusters can be obtained through iterative adaptation. According to the clustering results, the data of aluminum factory is labelled according to the actual meaning. A distance based continuous attribute naive Bias algorithm is proposed. The incremental idea of classifiers is used to improve the accuracy of algo-rithm classification. By using single slot test set data, every index level can be predicted by accumulating method, com-pared with the previous day, the change of variables are confirmed under each index, and then complete the prediction. It is found that the prediction model can predict the key indicators of aluminum electrolysis, and the proposed clustering and classification algorithms are good in UCI data and aluminum factory data.

关键词

铝生产/模糊聚类/朴素贝叶斯/累积法/增量思想

Key words

aluminum production/ fuzzy clustering/ naive Bayes/ cumulative method/ incremental thinking

分类

信息技术与安全科学

引用本文复制引用

陈勇,周晓锋,李帅..铝电解关键指标预测方法的研究与应用[J].计算机工程与应用,2019,55(12):250-258,9.

基金项目

中国科学院科技服务网络计划项目(No.Y7AA050A01). (No.Y7AA050A01)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文