| 注册
首页|期刊导航|噪声与振动控制|一种基于流形学习和KNN算法的柴油机工况识别方法

一种基于流形学习和KNN算法的柴油机工况识别方法

江志农 赵南洋 夏敏 赵飞松 高佳丽 张进杰

噪声与振动控制2019,Vol.39Issue(3):1-6,6.
噪声与振动控制2019,Vol.39Issue(3):1-6,6.DOI:10.3969/j.issn.1006-1355.2019.03.001

一种基于流形学习和KNN算法的柴油机工况识别方法

Operating Mode Identification Method for Diesel Engines based on Manifold Learning and KNN Algorithm

江志农 1赵南洋 1夏敏 2赵飞松 2高佳丽 2张进杰3

作者信息

  • 1. 北京化工大学 高端机械装备健康监控与自愈化北京市重点实验室,北京 100029
  • 2. 中石化重庆天然气管道有限责任公司,重庆 408000
  • 3. 北京化工大学 压缩机技术国家重点实验室压缩机健康智能监控中心,北京 100029
  • 折叠

摘要

Abstract

Under different load conditions, the signals of vibration, temperature, speed, etc., of diesel engines are significantly different, and the fault signal characteristics of the engine unit are often submerged in signals that change drastically with the load change. Therefore, the diesel engine’s fault monitoring and diagnosing under variable load conditions is difficult and the drastically changed signals always troubles the actual fault diagnosis. This paper presents an operating mode identification method for diesel engines based on manifold learning and KNN algorithm, which lays a foundation for fault monitoring and early warning of diesel engines under variable load conditions. The method combines the multi-source signal features of the unit to construct the feature vector. The feature reduction and sensitive feature extraction of the feature vector is achieved through the manifold learning t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm. The K-Nearest Neighbor (KNN) classification algorithm is used to complete the automatic classification of diesel engine’s operating load status. The diesel engine signal under normal and fault conditions verifies the effectiveness and practicality of this method.

关键词

振动与波/柴油机/变负荷/流形学习/KNN/敏感特征

Key words

vibration and wave/ diesel engine/ variable load/ manifold learning/ KNN/ sensitive feature

分类

能源科技

引用本文复制引用

江志农,赵南洋,夏敏,赵飞松,高佳丽,张进杰..一种基于流形学习和KNN算法的柴油机工况识别方法[J].噪声与振动控制,2019,39(3):1-6,6.

基金项目

国家自然科学基金资助项目(11572125,51575176) (11572125,51575176)

湖南省自然科学基金资助项目(2017JJ2084) (2017JJ2084)

噪声与振动控制

OACSCDCSTPCD

1006-1355

访问量0
|
下载量0
段落导航相关论文