| 注册
首页|期刊导航|计算机与数字工程|乳腺肿瘤图像的融合纹理特征提取方法

乳腺肿瘤图像的融合纹理特征提取方法

汪友明 张菡玫

计算机与数字工程2019,Vol.47Issue(6):1497-1501,5.
计算机与数字工程2019,Vol.47Issue(6):1497-1501,5.DOI:10.3969/j.issn.1672-9722.2019.06.043

乳腺肿瘤图像的融合纹理特征提取方法

Extraction of Fusion Feature from Breast Cancer Images

汪友明 1张菡玫1

作者信息

  • 1. 西安邮电大学 西安 710121
  • 折叠

摘要

Abstract

In order to accurately identify breast tumor image features,an improved textural feature extraction algorithm based on improved gray level co-occurrence matrix(GLCM)and Tamura is proposed. First,the images are preprocessed by eliminating im?age noise and enhancing image contrast. Then,the traditional gray level co-occurrence matrix is improved,and redundant informa?tion is reduced,improving the recognition rate of the image and the running speed of the program. Finally,The symbiotic matrix is combined with Tamura to obtain the image texture features,and the extracted features are identified. The experimental results show that the recognition rate of fusion features can reach 96.67% with 14.6s average calculation rate,which has high recognition accura?cy and omputational efficiency.

关键词

纹理特征/灰度共生矩阵/Tamura纹理/图像分类

Key words

textural feature/gray level co-occurrence matrix/Tamura texture/image classification

分类

信息技术与安全科学

引用本文复制引用

汪友明,张菡玫..乳腺肿瘤图像的融合纹理特征提取方法[J].计算机与数字工程,2019,47(6):1497-1501,5.

基金项目

"十三五"国防预研项目"高性能图形支撑技术"(编号:31511070401)资助. (编号:31511070401)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文