| 注册
首页|期刊导航|计算机工程与应用|新型LeNet-FC卷积神经网络模型算法的研究

新型LeNet-FC卷积神经网络模型算法的研究

白创 陈翔

计算机工程与应用2019,Vol.55Issue(5):105-111,7.
计算机工程与应用2019,Vol.55Issue(5):105-111,7.DOI:10.3778/j.issn.1002-8331.1803-0419

新型LeNet-FC卷积神经网络模型算法的研究

Research on New LeNet-FC Convolutional Neural Network Model Algorithm

白创 1陈翔1

作者信息

  • 1. 长沙理工大学 物理与电子科学学院,长沙 410114
  • 折叠

摘要

Abstract

Aiming at the problem of overfitting, slow convergence, local optimization and low recognition accuracy of existing Convolutional Neural Network(CNN)in face recognition training, a new LeNet-FC convolutional neural net-work model is proposed in this paper.By improving the network structure of the network layer, reducing the convolution kernel, and using the optimized Logarithmic Rectified Linear Uni(t L_ReLU)activation function, the recognition accuracy of the model in face recognition training reaches 99.85%.Simultaneously, a face recognition system is designed based on the LeNet-FC convolutional neural network model. The recognition accuracy of the system in the simulation test experiment with ORL face database reaches 96%.

关键词

人工智能/人脸识别/卷积神经网络/结构改进/激活函数优化

Key words

artificial intelligence/ face recognition/ convolutional neural network/ network structure improvement/ activa-tion function optimization

分类

计算机与自动化

引用本文复制引用

白创,陈翔..新型LeNet-FC卷积神经网络模型算法的研究[J].计算机工程与应用,2019,55(5):105-111,7.

基金项目

黑龙江省自然科学基金(No.F2015022) (No.F2015022)

黑龙江省普通本科高等学校青年创新人才培养计划(No.UNPYSCT-2017149, No.UNPYSCT-2017175) (No.UNPYSCT-2017149, No.UNPYSCT-2017175)

佳木斯市2017年度重点科研课题(No.170032). (No.170032)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文