| 注册
首页|期刊导航|计算机工程与应用|多启发因素改进蚁群算法的路径规划

多启发因素改进蚁群算法的路径规划

李理 李鸿 单宁波

计算机工程与应用2019,Vol.55Issue(5):219-225,250,8.
计算机工程与应用2019,Vol.55Issue(5):219-225,250,8.DOI:10.3778/j.issn.1002-8331.1805-0175

多启发因素改进蚁群算法的路径规划

Path Planning Based on Improved Ant Colony Algorithm with Multiple Inspired Factor

李理 1李鸿 1单宁波1

作者信息

  • 1. 长沙理工大学 电气与信息工程学院,长沙 410114
  • 折叠

摘要

Abstract

The path planning of mobile robots not only requires short path distances, but also avoids excessive turning of paths, serious bumps, and poor environmental adaptability. Therefore, this paper proposes improvement heuristics function based on three factors:path length, number of turns, and smoothness of gradient, comprehensively calculating of transi-tion probability. While improving the pheromone update method, it allocates the pheromone amount on each path accord-ing to the three-factor comprehensive index, guides ants to approach the path with the best overall performance. And it proposes a non-uniform initial pheromone method to prevent excessive ants into the dead end. It combines improved map modeling barriers to improve path safety. Simulation and experimental results show that the planning path obtained by the improved algorithm has a great improvement in the overall performance of the three factors, and has a good global search capability and convergence. Adjusting the parameters appropriately can also obtain a path with a prominent characteristic. Both the number of iterations and the calculation time perform better.

关键词

蚁群算法/启发函数/路径规划/移动机器人/信息素

Key words

Ant Colony Algorithm(ACA)/ inspired function/ grid path planning/ mobile robot/ pheromone

分类

信息技术与安全科学

引用本文复制引用

李理,李鸿,单宁波..多启发因素改进蚁群算法的路径规划[J].计算机工程与应用,2019,55(5):219-225,250,8.

基金项目

国家自然科学基金(No.61672149) (No.61672149)

吉林省科技发展计划基金(No.20170520052JH) (No.20170520052JH)

吉林省教育厅"十三五"科学技术研究基金(No.2016097). (No.2016097)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文