| 注册
首页|期刊导航|计算机工程与应用|基于BP神经网络的故障诊断模型研究

基于BP神经网络的故障诊断模型研究

冯玉芳 卢厚清 殷宏 曹林

计算机工程与应用2019,Vol.55Issue(6):24-30,7.
计算机工程与应用2019,Vol.55Issue(6):24-30,7.DOI:10.3778/j.issn.1002-8331.1811-0008

基于BP神经网络的故障诊断模型研究

Study on Fault Diagnosis Model Based on BP Neural Network

冯玉芳 1卢厚清 2殷宏 1曹林1

作者信息

  • 1. 解放军陆军工程大学,南京 210007
  • 2. 中国人民解放军 71375部队
  • 折叠

摘要

Abstract

Rolling bearing is one of the most commonly used components in rotating machinery. It’s easy to be damaged. But its working condition usually is very complex, which makes it difficult to diagnose rolling bearing faults accurately. In order to improve the effectiveness of rolling bearing fault diagnosis, the improved quantum bee colony algorithm is introduced into BP neural network and the BP neural network diagnosis model based on Improved Quantum Artificial Bee Colony algorithm(IQABC-BP)is proposed. Firstly, an improved quantum bee colony algorithm is proposed to solve the problem of quantum bee colony algorithm. Then the improved quantum bee colony algorithm is applied to optimize the initial weight, threshold and the number of hidden layer of BP neural network. Finally the model of BP neural network based on the improved quantum bee colony algorithm with super parallel and ultra-high speed is proposed and is applied to fault diagnosis of rolling bearing. The experimental results show that IQABC-BP with convergence speed faster and bet-ter fault diagnosis has the very good application value.

关键词

BP神经网络/量子蜂群算法/故障诊断

Key words

BP neural network/quantum bee colony algorithm/fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

冯玉芳,卢厚清,殷宏,曹林..基于BP神经网络的故障诊断模型研究[J].计算机工程与应用,2019,55(6):24-30,7.

基金项目

国家自然科学基金(No.61440047,No.61562079) (No.61440047,No.61562079)

新疆维吾尔自治区人文社科重点研究基地项目(No.050315C01). (No.050315C01)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文