| 注册
首页|期刊导航|计算机工程与应用|应用改进卷积神经网络的网络安全态势预测方法

应用改进卷积神经网络的网络安全态势预测方法

张任川 张玉臣 刘璟 范钰丹

计算机工程与应用2019,Vol.55Issue(6):86-93,8.
计算机工程与应用2019,Vol.55Issue(6):86-93,8.DOI:10.3778/j.issn.1002-8331.1808-0016

应用改进卷积神经网络的网络安全态势预测方法

Network Security Situation Prediction Method Using Improved Convolution Neural Network

张任川 1张玉臣 1刘璟 1范钰丹1

作者信息

  • 1. 信息工程大学,郑州 450004
  • 折叠

摘要

Abstract

Aiming at the high training complexity of neural network situation prediction model, a situation prediction method based on improved convolution neural network is proposed. Combined with the advantages of depth-wise separa-ble convolution and factorization into smaller convolution, a new model of improved convolution neural network security situation based on composite convolution structure is proposed, and the mapping of situation elements and situation val-ues are realized. The experimental simulation results show that the method obviously reduces the time complexity and the prediction time, improves the prediction accuracy compared with the existing typical prediction methods.

关键词

态势预测/神经网络/卷积神经网络/复合卷积结构

Key words

situation prediction/neural network/convolution neural network/compound convolution structure

分类

信息技术与安全科学

引用本文复制引用

张任川,张玉臣,刘璟,范钰丹..应用改进卷积神经网络的网络安全态势预测方法[J].计算机工程与应用,2019,55(6):86-93,8.

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文