| 注册
首页|期刊导航|计算机与数字工程|改进K-Means聚类算法在停车用户价值分群中的应用

改进K-Means聚类算法在停车用户价值分群中的应用

李向荣 范福海 孟向海

计算机与数字工程2019,Vol.47Issue(7):1596-1600,5.
计算机与数字工程2019,Vol.47Issue(7):1596-1600,5.DOI:10.3969/j.issn.1672-9722.2019.07.008

改进K-Means聚类算法在停车用户价值分群中的应用

Application of Improved K-Means Clustering Algorithm in Parking User Value Clustering

李向荣 1范福海 1孟向海1

作者信息

  • 1. 青岛科技大学 青岛 266061
  • 折叠

摘要

Abstract

With the development of information technology and Internet era,many enterprises take user relationship manage?ment as the focus of marketing. The clustering of user value is the key indicator of quantitative user relationship management. In this paper,it is taken business users parking data as the starting point,and in the traditional customer relationship management analysis based on RFM model,combined with the parking business requirements,parameters are reconstructed and analyzed,FLCPA Para?metric model is constructed. And based on the traditional K-Means clustering algorithm,a new method is put forward to determine the optimal number of clustering algorithm K-Means,which can effectively identify users with different values,and ultimately achieve customer value clustering. It can help for enterprises to develop targeted and personalized marketing strategy.

关键词

价值分群/FLCPA模型/K-Means聚类算法/最优聚类数

Key words

value grouping/FLCPA model/K-Means algorithm/optimal number of clusters

分类

信息技术与安全科学

引用本文复制引用

李向荣,范福海,孟向海..改进K-Means聚类算法在停车用户价值分群中的应用[J].计算机与数字工程,2019,47(7):1596-1600,5.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文