| 注册
首页|期刊导航|计算机与数字工程|基于稀疏自编码器与梯度方向直方图的手势识别

基于稀疏自编码器与梯度方向直方图的手势识别

缑新科 高庆东

计算机与数字工程2019,Vol.47Issue(7):1792-1796,5.
计算机与数字工程2019,Vol.47Issue(7):1792-1796,5.DOI:10.3969/j.issn.1672-9722.2019.07.046

基于稀疏自编码器与梯度方向直方图的手势识别

Gesture Recognition scheme Based on Histogram of Oriented Gradients and Stacked Auto Encoder

缑新科 1高庆东1

作者信息

  • 1. 兰州理工大学 兰州 730000
  • 折叠

摘要

Abstract

The traditional Histogram of Oriented Gradients(HOG)algorithm is sensitive to the contour edge information about or on the image during the extraction of image features,but the HOG feature lacks a description of the correlation between samples. Stacked Auto Encoder(SAE)can extract the characteristics of the sample of the feature extraction,but it requires a larger sample size. This paper combines HOG method and SAE method to use SVM classifier training classification gesture images under small da?ta sets,and experiments on the Jochen. Triesch data set show that this method can achieve better classification results.

关键词

手势识别/稀疏自编码器/特征提取

Key words

gesture recognition/sparse auto encoder/feature detection

分类

信息技术与安全科学

引用本文复制引用

缑新科,高庆东..基于稀疏自编码器与梯度方向直方图的手势识别[J].计算机与数字工程,2019,47(7):1792-1796,5.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文