| 注册
首页|期刊导航|电力系统及其自动化学报|基于自编码器和卷积神经网络的电能质量扰动分类

基于自编码器和卷积神经网络的电能质量扰动分类

李志军 王亚楠 安平 张鸿鹏 孙乐 徐铎

电力系统及其自动化学报2019,Vol.31Issue(7):70-75,6.
电力系统及其自动化学报2019,Vol.31Issue(7):70-75,6.DOI:10.19635/j.cnki.csu-epsa.000199

基于自编码器和卷积神经网络的电能质量扰动分类

Classification of Power Quality Disturbances Based on Auto-encoder and Convolutional Neural Network

李志军 1王亚楠 1安平 1张鸿鹏 1孙乐 1徐铎2

作者信息

  • 1. 河北工业大学控制科学与工程学院,天津 300130
  • 2. 河北工业大学控制科学与工程学院,天津 300130
  • 折叠

摘要

Abstract

The traditional classification methods for power quality disturbances often rely on expert experiences to ex?tract features,and the corresponding classification accuracy is limited. In this paper,a deep learning based classifica?tion method for power quality disturbances is proposed,which combines the sparse auto-encoder with a strong feature extraction capability and the convolution neural network. The proposed method includes two links,i.e.,unsupervised feature extraction and supervised disturbance classification. First,the high-dimensional input data are mapped onto a low-dimensional hidden variable feature by means of the encoder,and the new feature is restored to the original input signal in the same way. Then,the hidden variable output from the encoder is used as the feature,and the convolution network will output the types of disturbance. Simulation results show that the extracted features and classifier perfor?mance obtained using the proposed method are better than those obtained using the traditional ones.

关键词

电能质量/扰动分类/稀疏自动编码器/卷积神经网络

Key words

power quality/disturbance classification/sparse auto-encoder/convolutional neural network

分类

信息技术与安全科学

引用本文复制引用

李志军,王亚楠,安平,张鸿鹏,孙乐,徐铎..基于自编码器和卷积神经网络的电能质量扰动分类[J].电力系统及其自动化学报,2019,31(7):70-75,6.

基金项目

中国南方电网有限责任公司重点科技资助项目(066601(2016)030101XT198) (066601(2016)

电力系统及其自动化学报

OA北大核心CSCDCSTPCD

1003-8930

访问量0
|
下载量0
段落导航相关论文