| 注册
首页|期刊导航|计算机与数字工程|基于改进PSO-SVM算法的帕金森疾病诊断研究

基于改进PSO-SVM算法的帕金森疾病诊断研究

张琼 丁卫平 景炜 余利国

计算机与数字工程2019,Vol.47Issue(8):1851-1855,5.
计算机与数字工程2019,Vol.47Issue(8):1851-1855,5.DOI:10.3969/j.issn.1672-9722.2019.08.001

基于改进PSO-SVM算法的帕金森疾病诊断研究

Research of Parkinson's Disease Diagnosis Based on Improved PSO-SVM Algorithm

张琼 1丁卫平 1景炜 1余利国1

作者信息

  • 1. 南通大学计算机科学与技术学院 南通 226019
  • 折叠

摘要

Abstract

The doctors easily give wrong judgments because of the etiology of Parkinson's disease unclear and diverse clinical manifestations. In this paper,a support vector machines algorithm based on improved particle swarm optimization(IMPSO-SVM)is proposed to improve the accuracy of recognition of Parkinson's disease. This algorithm assigns inertia weights and learning factors to different properties of particles to optimize the penalty coefficients and kernel functions of support vector machines. Finally,the pro?posed IMPSO-SVM algorithm is applied to the clinical data of Parkinson's disease. The experimental result shows that this algorithm has improved the prediction accuracy and the execution efficiency,compared with the support vector machine optimized by the tradi?tional particle swarm optimization(PSO-SVM)and the support vector machine optimized by genetic algorithm(GA-SVM). There?fore,this algorithm can be used as an effective method for assisting doctors to diagnose Parkinson's disease.

关键词

改进粒子群算法/支持向量机/惯性权重/学习因子

Key words

improved particle swarm optimization/support vector machines/inertia weight/learning factor

分类

信息技术与安全科学

引用本文复制引用

张琼,丁卫平,景炜,余利国..基于改进PSO-SVM算法的帕金森疾病诊断研究[J].计算机与数字工程,2019,47(8):1851-1855,5.

基金项目

国家自然科学基金项目(编号:61300167) (编号:61300167)

江苏省自然科学基金项目(编号:BK20151274) (编号:BK20151274)

江苏省六大人才高峰项目(编号:XYDXXJS-048) (编号:XYDXXJS-048)

南通市应用基础研究项目(编号:GY12016014)资助. (编号:GY12016014)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文