| 注册
首页|期刊导航|计算机工程与应用|堆栈式混合自编码器的人脸表情识别方法

堆栈式混合自编码器的人脸表情识别方法

ZHANG Zhiyu WANG Ruiqiong WEI Minmin ZHOU Jie

计算机工程与应用2019,Vol.55Issue(13):140-144,200,6.
计算机工程与应用2019,Vol.55Issue(13):140-144,200,6.DOI:10.3778/j.issn.1002-8331.1803-0398

堆栈式混合自编码器的人脸表情识别方法

Stacked Hybrid Auto-Encoder Facial Expression Recognition Method

ZHANG Zhiyu 1WANG Ruiqiong 1WEI Minmin 1ZHOU Jie2

作者信息

  • 1. College of Automation, Xi’an University of Technology, Xi’an 710048, China 2.College of Mechanical and Electrical Engineering, Xi’an University of Electronic Science and Technology, Xi’an 710071, china
  • 2. College of Mechanical and Electrical Engineering, Xi’an University of Electronic Science and Technology, Xi’an 710071, china
  • 折叠

摘要

Abstract

To further improve the recognition rate of facial expressions, a face recognition method based on deep learning and Stacked Hybrid Auto-Encoder(SHAE)is adopted. The structure of the method is a 5-layer network structure composed of a Denoising Auto-Encoder(DAE), a Sparse Auto-Encoder(SAE), and an Auto-Encoder(AE). In order to increase the robustness and generalization ability of the network, a DAE is used to extract features from the samples. In order to reduce the dimensions of the extracted features and to extract further abstract sparse features, a SAE is used for cascading, and further processing of features. The training process begins with pre-training and overall fine-tuning of the unlabeled data, initializing and updating the weight of the whole structure, and then testing and training with labeled data. Experi-ments on two datasets, JAFFE and CK+, show that this method has a better recognition effect than a purely stacked DAE or apurely stacked SAE.

关键词

人脸表情识别/堆栈式混合自编码器(SHAE)/稀疏自编码器(SAE)/去噪自编码器(DAE)

Key words

face expression recognition/ Stacked Hybrid Auto-Encoder/ Sparse Auto-Encoder/ Denoising Auto-Encoder

分类

计算机与自动化

引用本文复制引用

ZHANG Zhiyu,WANG Ruiqiong,WEI Minmin,ZHOU Jie..堆栈式混合自编码器的人脸表情识别方法[J].计算机工程与应用,2019,55(13):140-144,200,6.

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量2
|
下载量0
段落导航相关论文