| 注册
首页|期刊导航|计算机工程与应用|结合高斯分布的改进二进制灰狼优化算法

结合高斯分布的改进二进制灰狼优化算法

CHEN Changqian MU Xiaodong NIU Ben WANG Lizhi

计算机工程与应用2019,Vol.55Issue(13):145-150,6.
计算机工程与应用2019,Vol.55Issue(13):145-150,6.DOI:10.3778/j.issn.1002-8331.1803-0444

结合高斯分布的改进二进制灰狼优化算法

Improved Binary Grey Wolves Optimization Algorithm Combined with Gaussian Distribution

CHEN Changqian 1MU Xiaodong 1NIU Ben 1WANG Lizhi1

作者信息

  • 1. College of War Support, Rocket Force University of Engineering, Xi’an 710025, China
  • 折叠

摘要

Abstract

In order to solve the problem that the Gray Wolf Optimization(GWO)algorithm is less utilized and developes immature on discrete issues, a Binary Gary Wolf Optimization(BGWO)algorithm is proposed. Firstly, aiming at the problem of chaos search that the initial population is more concentrated in solving binary problems, the Gaussian distribution curve is introduced, which makes the spatial distribution of initial population more uniform. Secondly, a transfer function is proposed to binarize the GWO. Then the performance of the algorithm is tested by the typical test function. The simulation results show that the proposed BGWO algorithm has better performance in precision. Finally, the BGWO is used to solve the knapsack problem. The conclusion shows that the BGWO has fewer iterations and higher solution accuracy.

关键词

二进制灰狼优化(BGWO)/高斯分布/背包问题/最优化选择

Key words

Binary Gary Wolf Optimization(BGWO)algorithm/ Gaussian distribution/ knapsack problem/ optimization choice

分类

信息技术与安全科学

引用本文复制引用

CHEN Changqian,MU Xiaodong,NIU Ben,WANG Lizhi..结合高斯分布的改进二进制灰狼优化算法[J].计算机工程与应用,2019,55(13):145-150,6.

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文