| 注册
首页|期刊导航|计算机工程与应用|基于多特征融合的交通标志识别算法

基于多特征融合的交通标志识别算法

韩习习 魏民 徐西义 李巧月 陈曦 祝汉城

计算机工程与应用2019,Vol.55Issue(18):195-200,6.
计算机工程与应用2019,Vol.55Issue(18):195-200,6.DOI:10.3778/j.issn.1002-8331.1806-0155

基于多特征融合的交通标志识别算法

Traffic Sign Recognition Algorithm Based on Multiple-Feature Fusion

韩习习 1魏民 2徐西义 3李巧月 1陈曦 1祝汉城1

作者信息

  • 1. 中国矿业大学 信息与控制工程学院,江苏 徐州 221116
  • 2. 山东能源新汶矿业集团 通信信息中心,山东 泰安 271213
  • 3. 山东省新汶矿业集团 翟镇煤矿,山东 新泰 271204
  • 折叠

摘要

Abstract

Taking recognition rate, time complexity and robustness all into consideration, this paper proposes a traffic sign recognition algorithm based on edge, texture and color feature fusion and Support Vector Machine(SVM). It con-ducts the statistical average on extracted Histogram of Oriented Gradien(t HOG)features which can describe the edge information of traffic signs images. The reduced-dimension HOG-maxLBP features are obtained by fusing with Local Bi-nary Pattern(LBP)features that can represent traffic sign internal texture information. The color features are concatenated with HOG-maxLBP features as the final features. Traffic sign training and classification are performed using SVM. Experi-mental results show that the proposed algorithm not only improves the traffic sign recognition rate, but also reduces the time complexity and enhances the system robustness.

关键词

交通标志识别(TSR)/方向梯度直方图(HOG)/局部二值模式(LBP)/颜色特征/特征融合/支持向量机(SVM)

Key words

Traffic Sign Recognition(TSR)/Histogram of Oriented Gradien(t HOG)/Local Binary Pattern(LBP)/color features/feature fusion/Support Vector Machine(SVM)

分类

信息技术与安全科学

引用本文复制引用

韩习习,魏民,徐西义,李巧月,陈曦,祝汉城..基于多特征融合的交通标志识别算法[J].计算机工程与应用,2019,55(18):195-200,6.

基金项目

国家自然科学基金(No.61771473,No.61379143). (No.61771473,No.61379143)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文