| 注册
首页|期刊导航|舰船电子工程|基于UKF-GM-PHD滤波算法的非线性多目标跟踪方法研究∗

基于UKF-GM-PHD滤波算法的非线性多目标跟踪方法研究∗

齐海明 张安清

舰船电子工程2019,Vol.39Issue(9):32-36,100,6.
舰船电子工程2019,Vol.39Issue(9):32-36,100,6.DOI:10.3969/j.issn.1672-9730.2019.09.008

基于UKF-GM-PHD滤波算法的非线性多目标跟踪方法研究∗

Research of Nonlinear Multi-target Tracking Method Based on UKF-GM-PHD Filtering Algorithm

齐海明 1张安清2

作者信息

  • 1. 海军91648部队 葫芦岛 125004
  • 2. 海军大连舰艇学院信息系统系 大连 116018
  • 折叠

摘要

Abstract

At present,multi-target tracking technology based on Probability Hypothesis Density(PHD)filtering has become a hot field in multi-target tracking research. In this paper,the traditional nonlinear processing method Unscentesd Kalman Filter (UKF)and Gaussian Mixture PHD(GM-PHD)filtering algorithm are combined to propose UKF-GM-PHD filtering algorithm. Thereby the application of GM-PHD filter in nonlinear systems is realized. The effectiveness of the proposed algorithm is verified by simulation. The algorithm is compared with the Extended Kalman Filter GM-PHD(EKF-GM-PHD)filtering algorithm. The filter?ing accuracy of the algorithm is higher than that of EKF-GM-PHD filtering algorithm.

关键词

高斯混合概率假设密度/无迹卡尔曼滤波/多目标跟踪

Key words

gaussian mixture probability hypothesis density/unscentesd kalman filter/multiple targets tracking

分类

信息技术与安全科学

引用本文复制引用

齐海明,张安清..基于UKF-GM-PHD滤波算法的非线性多目标跟踪方法研究∗[J].舰船电子工程,2019,39(9):32-36,100,6.

基金项目

国家自然科学基金项目(编号:61303192)资助. (编号:61303192)

舰船电子工程

OACSTPCD

1672-9730

访问量0
|
下载量0
段落导航相关论文