吉林大学学报(理学版)2019,Vol.57Issue(5):1023-1027,5.DOI:10.13413/j.cnki.jdxblxb.2018470
具有 1/4 对称度量联络的半 Rie mann 流形非退化超曲面
Non‐degenerate Hypersurfaces of Semi‐Riemannian Manifold with Quarter‐Symmetric Metric Connection
摘要
Abstract
Using the equations of Gauss and Weingarten with respect to the Levi‐Civita connection ,w e gave the equations of Gauss and Weingarten for a non‐degenerate hypersurface of a semi‐Riemannian manifold w ith a quarter‐sym metric metric connection ,and obtained the Gauss curvature equation and Codazzi‐M ainardi equation for this kind of hypersurface.We could further study the properties of more general connection by using this result .关键词
半Riemann流形/非退化超曲面/1/4对称度量联络/Levi‐Civita联络Key words
semi‐Riemannian manifold / non‐degenerate hypersurface / quarter‐symmetric metric connection /Levi‐Civita connection分类
数理科学引用本文复制引用
许静波,程晓亮..具有 1/4 对称度量联络的半 Rie mann 流形非退化超曲面[J].吉林大学学报(理学版),2019,57(5):1023-1027,5.基金项目
国家自然科学基金(批准号:11301215) 、吉林省自然科学基金(批准号:20150520052JH )和吉林省教育厅"十三五"科学技术研究项目(批准号:2016212). (批准号:11301215)