吉林大学学报(理学版)2019,Vol.57Issue(5):1065-1074,10.DOI:10.13413/j.cnki.jdxblxb.2018464
集值向量优化问题近似有效解的最优条件和对偶性
Optimal Conditions and Duality of Approximate Efficient Solutions for Set‐Valued Vector Optimization Problems
摘要
Abstract
The author considered the optimal conditions and duality of Henig approximate efficient solution and Global approximate efficient solution for set‐valued vector optimization problems in Banach space.U nder the assumption of cone‐subinvex set‐valued maps , the author established the sufficient optimal conditions of Henig approximate efficient solution and Global approximate efficient solution minimers and tw o kinds of the dual theorems of M ond‐Weir type and Wolfe type for set‐valued vector optimization problems .As an application ,the author analyzed relationship betw een the Henig approximate efficient solution and Global approximate efficient solution minimers for set‐valued vector optimization problem s and tw o approximate efficient solution minimers for a class of vector variational inequalities .关键词
锥‐次不变集值映射/最优条件/相依上图导数/近似有效解/对偶性Key words
cone‐subinvex set‐valued map /optimal condition /contingent derivative /approximate efficient solution /duality分类
数理科学引用本文复制引用
孟旭东..集值向量优化问题近似有效解的最优条件和对偶性[J].吉林大学学报(理学版),2019,57(5):1065-1074,10.基金项目
国家自然科学基金(批准号:11201216) 、江西省教育厅科学技术研究重点项目(批准号:GJJ181565)和江西省教育厅科学技术研究项目(批准号:GJJ161597 (批准号:11201216)
GJJ181567). ()