| 注册
首页|期刊导航|计算机工程与应用|基于深度学习的人体姿态估计方法综述

基于深度学习的人体姿态估计方法综述

邓益侬 罗健欣 金凤林

计算机工程与应用2019,Vol.55Issue(19):22-42,21.
计算机工程与应用2019,Vol.55Issue(19):22-42,21.DOI:10.3778/j.issn.1002-8331.1906-0113

基于深度学习的人体姿态估计方法综述

Overview of Human Pose Estimation Methods Based on Deep Learning

邓益侬 1罗健欣 1金凤林1

作者信息

  • 1. 中国人民解放军陆军工程大学 指挥控制工程学院,南京 210007
  • 折叠

摘要

Abstract

Human pose estimation is a research hot point in the field of computer vision. The human pose estimation methods based on deep learning get directly human pose information from two-dimensional image features through an appropriate neural network. This paper mainly follows the sequence from 2D to 3D human pose estimation, from the single-person detection to multi-person detection, from sparse node detection to dense model building, has systematically introduced the human post estimation methods in recent years based on deep learning to give a preliminary understanding of how to acquire the elements of human pose through deep learning, including the relative orientation and ratio scale of limb parts, the position coordinates and connection relations of joint points, and the information of the even more complex human skin model information. In the end, it summarizes the current research challenges and future hot point trends, which clearly present the development venation of this field for readers.

关键词

人体姿态估计/深度学习/关节点坐标/人体模型/检测回归

Key words

human pose estimate/deep learning/joint point coordinates/body model/detection and regression

分类

信息技术与安全科学

引用本文复制引用

邓益侬,罗健欣,金凤林..基于深度学习的人体姿态估计方法综述[J].计算机工程与应用,2019,55(19):22-42,21.

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文