| 注册
首页|期刊导航|东南大学学报(英文版)|基于随机森林和自编码的滚动轴承多视角特征融合

基于随机森林和自编码的滚动轴承多视角特征融合

孙文卿 邓艾东 邓敏强 朱静 翟怡萌 程强 刘洋

东南大学学报(英文版)2019,Vol.35Issue(3):302-309,8.
东南大学学报(英文版)2019,Vol.35Issue(3):302-309,8.DOI:10.3969/j.issn.1003-7985.2019.03.005

基于随机森林和自编码的滚动轴承多视角特征融合

Multi-view feature fusion for rolling bearing fault diagnosis using random forest and autoencoder

孙文卿 1邓艾东 2邓敏强 3朱静 3翟怡萌 3程强 3刘洋3

作者信息

  • 1. 东南大学火电机组振动国家工程研究中心,南京210096
  • 2. 东南大学能源与环境学院,南京210096
  • 折叠

摘要

Abstract

To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions,a novel method based on multi-view feature fusion is proposed.Firstly,multi-view features from perspectives of the time domain,frequency domain and time-frequency domain are extracted through the Fourier transform,Hilbert transform and empirical mode decomposition (EMD).Then,the random forest model (RF) is applied to select features which are highly correlated with the bearing operating state.Subsequently,the selected features are fused via the autoencoder (AE) to further reduce the redundancy.Finally,the effectiveness of the fused features is evaluated by the support vector machine (SVM).The experimental results indicate that the proposed method based on the multi-view feature fusion can effectively reflect the difference in the state of the rolling bearing,and improve the accuracy of fault diagnosis.

关键词

多视角特征/特征融合/故障诊断/滚动轴承/机器学习

Key words

multi-view features/feature fusion/fault diagnosis/rolling bearing/machine learning

分类

机械制造

引用本文复制引用

孙文卿,邓艾东,邓敏强,朱静,翟怡萌,程强,刘洋..基于随机森林和自编码的滚动轴承多视角特征融合[J].东南大学学报(英文版),2019,35(3):302-309,8.

基金项目

The National Natural Science Foundation of China(No.51875100). (No.51875100)

东南大学学报(英文版)

1003-7985

访问量0
|
下载量0
段落导航相关论文