| 注册
首页|期刊导航|东南大学学报(英文版)|基于小波系数树状结构的组稀疏图像去噪方法

基于小波系数树状结构的组稀疏图像去噪方法

张涛 魏海广 莫绪涛

东南大学学报(英文版)2019,Vol.35Issue(3):332-340,9.
东南大学学报(英文版)2019,Vol.35Issue(3):332-340,9.DOI:10.3969/j.issn.1003-7985.2019.03.009

基于小波系数树状结构的组稀疏图像去噪方法

Image denoising method with tree-structured group sparse modeling of wavelet coefficients

张涛 1魏海广 1莫绪涛1

作者信息

  • 1. 安徽工业大学数理科学与工程学院,马鞍山243000
  • 折叠

摘要

Abstract

In order to enhance the image contrast and quality,inspired by the interesting observation that an increase in noise intensity tends to narrow the dynamic range of the local standard deviation (LSD) of an image,a tree-structured group sparse optimization model in the wavelet domain is proposed for image denoising.The compressed dynamic range of LSD caused by noise leads to a contrast reduction in the image,as well as the degradation of image quality.To equalize the LSD distribution,sparsity on the LSD matrix is enforced by employing a mixed norm as a regularizer in the image denoising model.This mixed norm introduces a coupling between wavelet coefficients and provides a tree-structured group scheme.The alternating direction method of multipliers (ADMM) and the fast iterative shrinkage-thresholding algorithm (FISTA) are applied to solve the group sparse model based on different cases.Several experiments are conducted to verify the effectiveness of the proposed model.The experimental results indicate that the proposed group sparse model can efficiently equalize the LSD distribution and therefore can improve the image contrast and quality.

关键词

局部均方差/组稀疏/图像去噪/混合范数/纹理

Key words

local standard deviation/group sparse/image denoising/mixed norm/texture

分类

信息技术与安全科学

引用本文复制引用

张涛,魏海广,莫绪涛..基于小波系数树状结构的组稀疏图像去噪方法[J].东南大学学报(英文版),2019,35(3):332-340,9.

基金项目

The National Natural Science Foundation of China(No.61701004,11504003),the Natural Science Foundation of Anhui Province (No.1708085QA15). (No.61701004,11504003)

东南大学学报(英文版)

1003-7985

访问量0
|
下载量0
段落导航相关论文