| 注册
首页|期刊导航|东南大学学报(英文版)|基于梯度提升决策树的高速公路行程时间预测模型

基于梯度提升决策树的高速公路行程时间预测模型

程娟 陈先华

东南大学学报(英文版)2019,Vol.35Issue(3):393-398,6.
东南大学学报(英文版)2019,Vol.35Issue(3):393-398,6.DOI:10.3969/j.issn.1003-7985.2019.03.017

基于梯度提升决策树的高速公路行程时间预测模型

Travel time prediction model of freeway based on gradient boosting decision tree

程娟 1陈先华1

作者信息

  • 1. 东南大学交通学院,南京211189
  • 折叠

摘要

Abstract

To investigate the travel time prediction method of the freeway,a model based on the gradient boosting decision tree (GBDT) is proposed.Eleven variables (namely,travel time in current period Ti,traffic flow in current period Qi,speed in current period Vi,density in current period Ki,the number of vehicles in current period Ni,occupancy in current period Ri,traffic state parameter in current period Xi,travel time in previous time period Ti-1,etc.) are selected to predict the travel time for 10 min ahead in the proposed model.Data obtained from VISSIM simulation is used to train and test the model.The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model.Travel time in current period Ti is the most important variable among all variables in the GBDT model.The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.

关键词

梯度提升决策树/行程时间预测/高速公路/交通状态参数

Key words

gradient boosting decision tree (GBDT)/travel time prediction/freeway/traffic state parameter

分类

交通工程

引用本文复制引用

程娟,陈先华..基于梯度提升决策树的高速公路行程时间预测模型[J].东南大学学报(英文版),2019,35(3):393-398,6.

基金项目

The National Natural Science Foundation of China(No.51478114,51778136). (No.51478114,51778136)

东南大学学报(英文版)

1003-7985

访问量0
|
下载量0
段落导航相关论文