| 注册
首页|期刊导航|计算机工程与应用|改进YOLOV3算法在行人识别中的应用

改进YOLOV3算法在行人识别中的应用

葛雯 史正伟

计算机工程与应用2019,Vol.55Issue(20):128-133,6.
计算机工程与应用2019,Vol.55Issue(20):128-133,6.DOI:10.3778/j.issn.1002-8331.1901-0318

改进YOLOV3算法在行人识别中的应用

Application of Improved YOLOV3 Algorithm in Pedestrian Identification

葛雯 1史正伟1

作者信息

  • 1. 沈阳航空航天大学 电子与信息工程学院,沈阳 110136
  • 折叠

摘要

Abstract

In order to avoid the mutual occlusion of human and objects, the inaccurate detection of small targets, and the influence of complex illumination intensity on pedestrian detection, this paper proposes an improvement of multi-scale clustering convolutional neural network MK-YOLOV3 algorithm to realize the recognition and detection of images. The algorithm improves the YOLOV3. Firstly, the image features are extracted by simple clustering, and the corresponding feature maps are obtained. Then the K-means clustering algorithm is combined with the kernel function to determine the anchor position to achieve better clustering. Multi-scale fusion is performed on the shallow feature information of small targets to improve the detection effect of small targets. The simulation results verify that the algorithm has a great improve-ment on the accuracy and speed of small target recognition on VOC dataset, and has a higher recall rate and accuracy in video intelligence analysis.

关键词

行人检测/YOLOV3/卷积神经网络/特征图

Key words

pedestrian detection/YOLOV3/convolutional neural network/feature map

分类

信息技术与安全科学

引用本文复制引用

葛雯,史正伟..改进YOLOV3算法在行人识别中的应用[J].计算机工程与应用,2019,55(20):128-133,6.

基金项目

国家自然科学基金(No.61671310) (No.61671310)

辽宁省教育厅项目(No.L201603). (No.L201603)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文