| 注册
首页|期刊导航|计算机工程与应用|基于多线索特征融合的图像分类方法

基于多线索特征融合的图像分类方法

彭媛 段先华 王万耀 鲁文超

计算机工程与应用2019,Vol.55Issue(20):164-169,6.
计算机工程与应用2019,Vol.55Issue(20):164-169,6.DOI:10.3778/j.issn.1002-8331.1807-0042

基于多线索特征融合的图像分类方法

Multi-Cue Feature Fusion Based Image Classification

彭媛 1段先华 1王万耀 1鲁文超1

作者信息

  • 1. 江苏科技大学 计算机学院,江苏 镇江 212000
  • 折叠

摘要

Abstract

Due to the noise and redundant information in the image, the result of classification is not accurate. This paper proposes a feature fusion classification algorithm that based on multiple clues. Firstly, it gets a significant image by the improved global saliency and rarity metrics. Next, it extracts the Histogram of Oriented Gradient(HOG)features on the original image, including the compressed image and the salient image. And then it merges the extracted feature vectors. At last, it uses Distance Binary Tree Support Vector Machines(DBT-SVM)based on Euclidean distance for image classifica-tion. Experiments with Caltech101 and flower image datasets show that the proposed algorithm can effectively improve the accuracy of image classification.

关键词

图像分类/方向梯度直方图/特征提取/显著性/支持向量机

Key words

image classification/Histogram of Oriented Gradient(HOG)/feature extraction/saliency/Support Vector Machines(SVM)

分类

信息技术与安全科学

引用本文复制引用

彭媛,段先华,王万耀,鲁文超..基于多线索特征融合的图像分类方法[J].计算机工程与应用,2019,55(20):164-169,6.

基金项目

国家自然科学基金(No.61772244). (No.61772244)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文