| 注册
首页|期刊导航|计算机科学与探索|多标记不完备数据的特征选择算法

多标记不完备数据的特征选择算法

钱文彬 黄琴 王映龙 杨珺

计算机科学与探索2019,Vol.13Issue(10):1768-1780,13.
计算机科学与探索2019,Vol.13Issue(10):1768-1780,13.

多标记不完备数据的特征选择算法

Feature Selection Algorithm in Multi-Label Incomplete Data*

钱文彬 1黄琴 2王映龙 1杨珺1

作者信息

  • 1. 江西农业大学 计算机与信息工程学院,南昌 330045
  • 2. 江西农业大学 软件学院,南昌 330045
  • 折叠

摘要

Abstract

The feature selection of multi-label data is considered as an important research issue in machine learning and data mining. At present, most feature selection works of multi-label deal with the complete data. However, in many applications, the data are continuous, because of the high diagnosis cost, privacy protection or other factors, resulting in the incompleteness. To address this issue, a feature selection algorithm in multi-label incomplete data is proposed. Neighborhood rough set model is applied for feature selection in multi-label incomplete data, and then the neighborhood granularities of the multi-label incomplete data are computed by the neighborhood threshold. The criterion of feature significance is developed based on neighborhood granularities. On this basis, the feature selection algorithm is designed for multi-label incomplete data. Finally, the effectiveness and feasibility of the proposed algorithm are verified by the experimental results on the Mulan dataset.

关键词

不完备数据/粗糙集/特征选择/属性约简

Key words

incomplete data/rough sets/feature selection/attribute reduction

分类

信息技术与安全科学

引用本文复制引用

钱文彬,黄琴,王映龙,杨珺..多标记不完备数据的特征选择算法[J].计算机科学与探索,2019,13(10):1768-1780,13.

基金项目

The National Natural Science Foundation of China under Grant Nos. 61502213, 61662023, 71461013 (国家自然科学基金) (国家自然科学基金)

the Natural Science Foundation of Jiangxi Province under Grant Nos. 20161BAB212049, 20161BAB212047 (江西省自然科学基金). (江西省自然科学基金)

计算机科学与探索

OA北大核心CSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文