| 注册
首页|期刊导航|计算机工程与应用|深度学习框架下压缩感知重建算法综述

深度学习框架下压缩感知重建算法综述

曾春艳 叶佳翔 王志锋 武明虎

计算机工程与应用2019,Vol.55Issue(17):1-8,19,9.
计算机工程与应用2019,Vol.55Issue(17):1-8,19,9.DOI:10.3778/j.issn.1002-8331.1903-0437

深度学习框架下压缩感知重建算法综述

Survey of Compressed Sensing Reconstruction Algorithms in Deep Learning Framework

曾春艳 1叶佳翔 1王志锋 2武明虎1

作者信息

  • 1. 湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,武汉 430068
  • 2. 华中师范大学 数字媒体技术系,武汉 430079
  • 折叠

摘要

Abstract

Compressed Sensing(CS)technology is a milestone in the field of signal processing, which samples signals far less than Nyquist frequency, and reconstructs the original signals with high probability. In recent years, the advantages of deep learning technology in feature extraction and pattern classification provide new ideas for CS. Data-driven method is adopted in deep learning-based compressed sensing reconstruction algorithm, which reduces the reconstruction time by an order of magnitude, and the reconstruction accuracy is comparable or higher. This paper focuses on the deep learning-based compressed sensing reconstruction methods, considering the traditional reconstruction methods, and divides them into three categories:prior knowledge-based, pure data-driven, mixed prior knowledge-driven and data-driven. The characteristics of typical algorithms, network structure and key steps are analyzed. Finally, three kinds of algorithms are analyzed and summarized, and the research prospects of deep learning technology applied to compressed sensing are prospected.

关键词

压缩感知/重建算法/深度学习/数据驱动

Key words

compressed sensing/reconstruction algorithms/deep learning/data driven

分类

信息技术与安全科学

引用本文复制引用

曾春艳,叶佳翔,王志锋,武明虎..深度学习框架下压缩感知重建算法综述[J].计算机工程与应用,2019,55(17):1-8,19,9.

基金项目

国家自然科学基金(No.61501199) (No.61501199)

湖北省自然科学基金(No.2017CFB683) (No.2017CFB683)

华中师范大学中央高校基本科研业务费项目(No.CCNU18QN021) (No.CCNU18QN021)

湖北省高等学校优秀中青年科技创新团队计划项目(No.T201805) (No.T201805)

太阳能高效利用及储能运行控制湖北省重点实验室开放研究基金(No.HBSEES201706). (No.HBSEES201706)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文