| 注册
首页|期刊导航|计算机工程与应用|基于改进的卷积神经网络脑电信号情感识别

基于改进的卷积神经网络脑电信号情感识别

田莉莉 邹俊忠 张见 卫作臣 汪春梅

计算机工程与应用2019,Vol.55Issue(22):99-105,7.
计算机工程与应用2019,Vol.55Issue(22):99-105,7.DOI:10.3778/j.issn.1002-8331.1807-0219

基于改进的卷积神经网络脑电信号情感识别

Emotion Recognition of EEG Signal Based on Improved Convolutional Neural Network

田莉莉 1邹俊忠 1张见 1卫作臣 1汪春梅2

作者信息

  • 1. 华东理工大学 信息科学与工程学院 自动化系,上海 200237
  • 2. 上海师范大学 信息与机电工程学院 自动化系,上海 200234
  • 折叠

摘要

Abstract

Considering that traditional machine learning requires artificial construction features and low feature quality, this paper proposes a novel automatic feature extraction approach in Electroencephalograph(EEG)signals based on 1-D Convolutional Neural Network(CNN). This approach uses the idea of compilation, at the same time the convolutional layer and the downsampling layer form the encoder network to extract the emotional characteristics of the EEG signal, then the Leaky ReLU activation function is applied to the feature map. For the convolution pre-training process, the cross-entropy and regularization terms are used to optimize the loss function, then the random forest classifier is used to obtain the emo-tion classification label. Finally, the experiment is carried out on the international public data set SEED, which achieves 94.7% sentiment classification accuracy, and the experimental results show the effectiveness and robustness of the pro-posed method.

关键词

脑电信号(EEG)/特征提取/卷积神经网络(CNN)/随机森林/损失函数

Key words

Electroencephalograph(EEG)/feature extracting/Convolutional Neural Network(CNN)/fandom forest/loss function

分类

信息技术与安全科学

引用本文复制引用

田莉莉,邹俊忠,张见,卫作臣,汪春梅..基于改进的卷积神经网络脑电信号情感识别[J].计算机工程与应用,2019,55(22):99-105,7.

基金项目

国家自然科学基金(No.61071085). (No.61071085)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文