| 注册
首页|期刊导航|东华大学学报(英文版)|Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM)

Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM)

YANG Qirui XU Kaizhou ZHENG Xiaohu XIAO Lei BAO Jinsong

东华大学学报(英文版)2019,Vol.36Issue(4):364-368,5.
东华大学学报(英文版)2019,Vol.36Issue(4):364-368,5.

Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM)

Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM)

YANG Qirui 1XU Kaizhou 2ZHENG Xiaohu 1XIAO Lei 1BAO Jinsong1

作者信息

  • 1. College of Mechanical Engineering, Donghua University, Shanghai 201600, China
  • 2. Shanghai Space Propulsion Technology Research Institute, Shanghai 201100, China
  • 折叠

摘要

关键词

health condition recognition/milling tool/principal component analysis(PCA)/long short term memory, (LSTM)

Key words

health condition recognition/milling tool/principal component analysis(PCA)/long short term memory, (LSTM)

分类

信息技术与安全科学

引用本文复制引用

YANG Qirui,XU Kaizhou,ZHENG Xiaohu,XIAO Lei,BAO Jinsong..Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM)[J].东华大学学报(英文版),2019,36(4):364-368,5.

基金项目

National Natural Science Foundation of China (No.51805079) (No.51805079)

Shanghai Natural Science Foundation,China (No.17ZR1400600) (No.17ZR1400600)

Fundamental Research Funds for the Central Universities,China (No.16D110309) (No.16D110309)

东华大学学报(英文版)

1672-5220

访问量0
|
下载量0
段落导航相关论文