| 注册
首页|期刊导航|北京大学学报(自然科学版)|基于多任务学习的高分辨率遥感影像建筑实例分割

基于多任务学习的高分辨率遥感影像建筑实例分割

惠健 秦其明 许伟 隋娟

北京大学学报(自然科学版)2019,Vol.55Issue(6):1067-1077,11.
北京大学学报(自然科学版)2019,Vol.55Issue(6):1067-1077,11.DOI:10.13209/j.0479-8023.2019.106

基于多任务学习的高分辨率遥感影像建筑实例分割

Instance Segmentation of Buildings from High-Resolution Remote Sensing Images with Multitask Learning

惠健 1秦其明 2许伟 1隋娟2

作者信息

  • 1. 北京大学遥感与地理信息系统研究所,北京大学地球与空间科学学院,北京 100871
  • 2. 空间信息集成与3S 工程应用北京市重点实验室,北京 100871
  • 折叠

摘要

Abstract

At present,building extraction from high-resolution remote sensing images using deep neural network is viewed as a binary classification problem,which divides the pixels into two categories,building and non-building,but it cannot distinguish individual buildings.To solve this problem,the U-Net modified with Xception module and multitask learning are combined to apply to the instance segmentation of buildings,which both acquires the binary classification and distinguishes the individual buildings.Inria aerial imagery is used as the research dataset to validate the algorithm.The results show that the binary classification performance of U-Net modified with Xception outperforms U-Net by about 1.4%.The multitask driven deep neural network not only accomplishes the instance segmentation of buildings,but also improves the accuracy by about 0.5%.

关键词

多任务学习/建筑物提取/深度神经网络/实例分割

Key words

multitask learning/building extraction/deep neural network/instance segmentation

引用本文复制引用

惠健,秦其明,许伟,隋娟..基于多任务学习的高分辨率遥感影像建筑实例分割[J].北京大学学报(自然科学版),2019,55(6):1067-1077,11.

基金项目

国家重点研发计划(2017YFB0503905)资助 (2017YFB0503905)

北京大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0479-8023

访问量0
|
下载量0
段落导航相关论文