煤矿安全2019,Vol.50Issue(11):206-209,4.DOI:10.13347/j.cnki.mkaq.2019.11.048
修正的Knothe沉陷预计模型及其参数研究
Modified Knothe Subsidence Prediction Model and Its Parameters
摘要
Abstract
According to deficiency of the Knothe time function in describing the dynamic subsidence prediction process in the mining subsidence area, a new dynamic subsidence model is proposed, three-parameter Knothe time function. The initial settle-ment speed parameter b1, the time power index parameter b2 and the curve shape parameter b3 are added to the model. The pa-rameters solution is based on the particle swarm optimization(PSO)algorithm. The measured data proves that the dynamic subsi-dence prediction model of the mining area based on the improved Knothe time function can reflect the dynamic process of surface subsidence. The maximum error between the measured value and the predicted value of the strike line is 5.02 cm, the minimum error is 0.1 mm, and the average error is 1.19 cm in each observation period. The accuracy is very reliable and meets the needs of mining work.关键词
沉陷预计/三参数/粒子群优化算法/修正模型/地表下沉Key words
subsidence prediction/ three-parameter/ particle swarm optimization algorithm/ modified model/ surface subsidence分类
矿业与冶金引用本文复制引用
牛亚超,徐良骥,张劲满..修正的Knothe沉陷预计模型及其参数研究[J].煤矿安全,2019,50(11):206-209,4.基金项目
安徽省对外合作计划资助项目(201904b11020015) (201904b11020015)
国家自然科学基金资助项目(41472323) (41472323)