| 注册
首页|期刊导航|计算机工程与应用|空洞卷积的多尺度语义分割网络

空洞卷积的多尺度语义分割网络

曲长波 姜思瑶 吴德阳

计算机工程与应用2019,Vol.55Issue(24):91-95,5.
计算机工程与应用2019,Vol.55Issue(24):91-95,5.DOI:10.3778/j.issn.1002-8331.1904-0155

空洞卷积的多尺度语义分割网络

Multiscale Semantic Segmentation Network Based on Cavity Convolution

曲长波 1姜思瑶 1吴德阳2

作者信息

  • 1. 辽宁工程技术大学,辽宁 葫芦岛 125105
  • 2. 燕山大学,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

The development of computer hardware has greatly promoted the development of computer vision. Convolu-tion neural network has made remarkable achievements in semantic segmentation. However, the stacking of multiple con-volutional layers inevitably result in the loss of detailed information in the boundary of objects. In order to preserve bound-ary information as far as possible and improve the accuracy of image segmentation, a multiscale atrous convolution neural network model is proposed. The proposed model utilizes multiscale pooling to adapt to different scale targets in images. Besides, atrous convolution layer is used to learn target features, thus the accuracy of detailed information is improved, better segmentation results are obtained. Experimental results on the ISPRS Vaihingen dataset show that the proposed mul-tiscale atrous convolution neural network is effective for target boundary fitting.

关键词

深度学习/语义分割/空洞卷积/多尺度

Key words

deep learning/semantic segmentation/cavity convolution/multiscale

分类

信息技术与安全科学

引用本文复制引用

曲长波,姜思瑶,吴德阳..空洞卷积的多尺度语义分割网络[J].计算机工程与应用,2019,55(24):91-95,5.

基金项目

国家自然科学基金(No.71771111). (No.71771111)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文