| 注册
首页|期刊导航|计算机工程与应用|基于多特征融合的深层网络图像语义识别方法

基于多特征融合的深层网络图像语义识别方法

王哲 杨鹏飞 杨雅茹 姚蓉 杨雄 李海芳

计算机工程与应用2019,Vol.55Issue(24):141-146,177,7.
计算机工程与应用2019,Vol.55Issue(24):141-146,177,7.DOI:10.3778/j.issn.1002-8331.1810-0010

基于多特征融合的深层网络图像语义识别方法

Multi-Feature Fusion Based Deep Network for Image Semantic Recognition

王哲 1杨鹏飞 1杨雅茹 1姚蓉 1杨雄 1李海芳1

作者信息

  • 1. 太原理工大学 信息与计算机学院,太原 030600
  • 折叠

摘要

Abstract

Images are powerful tools with which to convey human emotions, with different images stimulating diverse emotions. In this paper, a data augmentation method based on small data sets is adopted. The advanced features(object category and deep emotion feature)are used, which are automatically extracted by the deep network combined with low-level features(color and texture features)to recognize emotion of the image. A high-level semantic descriptive phrase including compound emotions and object is output. The results show that the proposed method is superior to other tradi-tional manual extraction methods or existing deep learning models and achieves 66.54% accuracy on emotion recognition on IAPS and GAPED data sets.

关键词

图像情感/迁移学习/卷积神经网络

Key words

image semantics/transfer learning/Convolutional Neural Network(CNN)

分类

信息技术与安全科学

引用本文复制引用

王哲,杨鹏飞,杨雅茹,姚蓉,杨雄,李海芳..基于多特征融合的深层网络图像语义识别方法[J].计算机工程与应用,2019,55(24):141-146,177,7.

基金项目

国家自然科学基金(No.61472270). (No.61472270)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文