| 注册
首页|期刊导航|计算机与数字工程|基于LeNet-5模型的手写数字识别优化方法

基于LeNet-5模型的手写数字识别优化方法

汪雅琴 夏春蕾 戴曙光

计算机与数字工程2019,Vol.47Issue(12):3177-3181,5.
计算机与数字工程2019,Vol.47Issue(12):3177-3181,5.DOI:10. 3969/j. issn. 1672-9722. 2019. 12. 045

基于LeNet-5模型的手写数字识别优化方法

Handwritten Digital Recognition Optimization Method Based on LeNet-5 Model

汪雅琴 1夏春蕾 1戴曙光1

作者信息

  • 1. 上海理工大学光电信息与计算机工程学院 上海 200093
  • 折叠

摘要

Abstract

As a kind of depth feedforward artificial neural network,convolutional neural network has been successfully ap?plied in the field of image recognition. Among them,the LeNet-5 model is the most classic convolutional neural network model. This model is used on the MNIST character library and the sample training method of convolution layer is optimized. That is to say, the training method that uses the number of fixed input samples per batch and the number of fixed iterations is optimized to be a mixed training sample mode with different numbers of input samples per batch and different iterations. The optimized training meth?od can reduce the pre-processing workload and speed up the recognition speed. The experimental results show that the optimized mixed sample input method can get a higher recognition rate under the premise of equal sample training time.

关键词

图像识别/卷积神经网络/LeNet-5模型/MNIST字符库/手写数字识别

Key words

image identification/convolutional neural network/LeNet-5 model/MNIST character library/handwritten dig⁃it recognition

分类

信息技术与安全科学

引用本文复制引用

汪雅琴,夏春蕾,戴曙光..基于LeNet-5模型的手写数字识别优化方法[J].计算机与数字工程,2019,47(12):3177-3181,5.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文