| 注册
首页|期刊导航|煤矿安全|基于改进FPN的输送带异物识别方法

基于改进FPN的输送带异物识别方法

吴守鹏 丁恩杰 俞啸

煤矿安全2019,Vol.50Issue(12):127-130,4.
煤矿安全2019,Vol.50Issue(12):127-130,4.DOI:10.13347/j.cnki.mkaq.2019.12.029

基于改进FPN的输送带异物识别方法

Foreign Body Identification of Belt Based on Improved FPN

吴守鹏 1丁恩杰 2俞啸1

作者信息

  • 1. 中国矿业大学 物联网(感知矿山)研究中心,江苏 徐州 221008
  • 2. 中国矿业大学 信息与控制工程学院,江苏 徐州221008
  • 折叠

摘要

Abstract

Aiming at the problems of belt damage and tear caused by large-scale gangues or irons entering the coal belt system, a kind of Faster-RCNN+ double-sided feature pyramid networks (DSFPN) coal-transport belt foreign object recognition model is proposed. Based on the deep learning target detection framework Faster-RCNN, the model proposes DSFPN for the improvement of FPN structure. DSFPN solves the multi-scale problem of belt foreign objects through the bottom-up and top-down multi-scale feature fusion process. The test results show that the DSFPN proposed in this paper can effectively improve the detection ability of small-sized foreign bodies such as small pieces of gangues, and improve the recognition accuracy of large-sized foreign objects such as bolts and large gangues.

关键词

带式输送机/目标检测/特征金字塔/FPN/Faster-RCNN Key words: belt conveyor/ object detection/ feature pyramid/ FPN/ Faster-RCNN

分类

矿业与冶金

引用本文复制引用

吴守鹏,丁恩杰,俞啸..基于改进FPN的输送带异物识别方法[J].煤矿安全,2019,50(12):127-130,4.

基金项目

基 金 项 目:"十 三 五"国 家 重 点 研 发 计 划 资 助 项 目(2017YFC0804400) (2017YFC0804400)

煤矿安全

OA北大核心CSTPCD

1003-496X

访问量0
|
下载量0
段落导航相关论文