| 注册
首页|期刊导航|计算机工程与应用|基于数据深度的过程工业故障检测方法

基于数据深度的过程工业故障检测方法

车建国 赵赛

计算机工程与应用2020,Vol.56Issue(1):265-271,7.
计算机工程与应用2020,Vol.56Issue(1):265-271,7.DOI:10.3778/j.issn.1002-8331.1810-0260

基于数据深度的过程工业故障检测方法

Fault Detection Method Based on Data Depth for Process Industry

车建国 1赵赛1

作者信息

  • 1. 南开大学 商学院,天津 300071
  • 折叠

摘要

Abstract

In order to monitor the quality of production process of the process industry, a fault detection method based on data depth is proposed. The common mahalanobis depth and spatial depth are selected, and using Gaussian kernel func-tion to generalize spatial depth in order to improve the sensitivity of spatial depth to position deviation. This method maps high-dimensional data to one-dimensional depth value by means of depth function(mahalanobis depth and kernelized spa-tial depth), and then constructs asymptotic distribution by combining non-parametric rank statistics to make fault judg-ment. The effectiveness of the proposed method is verified through the Tennessee Eastman(TE)simulation experiment by referring to the two indicators of false alarm rate and detection efficiency and comparing with other methods.

关键词

故障检测/数据深度/核空间深度/马氏深度/秩统计量/TE过程

Key words

fault detection/data depth/kernelized spatial depth/mahalanobis depth/rank statistic/TE process

分类

数理科学

引用本文复制引用

车建国,赵赛..基于数据深度的过程工业故障检测方法[J].计算机工程与应用,2020,56(1):265-271,7.

基金项目

教育部人文社会科学一般研究项目(No.15YJC630007) (No.15YJC630007)

南开大学亚洲研究中心项目(No.AS1410) (No.AS1410)

南开大学基本科研业务经费项目(No.NKZXB1202) (No.NKZXB1202)

国家自然科学基金(No.71102047). (No.71102047)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文