应用数学2020,Vol.33Issue(1):91-99,9.
一类具粘性阻尼项的拟线性波动方程解的局部存在性和整体不存在性
Local Existence and Global Nonexistence Theorems for a Viscous Damped Quasi-Linear Wave Equations
摘要
Abstract
In this paper, the existence and uniqueness of the local solution for the initial boundary value problem for a class of three-dimensional space of quasi-linear viscous damping wave equation are proved by the Galerkin method and compactness principle. The blow-up of the solution in limited time for this question is proved by means of the energy integral inequality.关键词
粘性阻尼/拟线性波动方程/初边值间题/局部解/解的爆破Key words
Viscous damped/Quasi-linear wave equation/Initial boundary problem/Local solution/Blow-up of solution分类
数理科学引用本文复制引用
宋瑞丽,王书彬..一类具粘性阻尼项的拟线性波动方程解的局部存在性和整体不存在性[J].应用数学,2020,33(1):91-99,9.基金项目
Supported by the National Natural Science Foundation of China (11171311) (11171311)