物理化学学报2020,Vol.36Issue(3):30-37,8.DOI:10.3866/PKU.WHXB201903047
In2O3三维纳米结构的控制合成及高效光解水产氢活性研究
Controlling Self-Assembly of 3D In2O3 Nanostructures for Boosting Photocatalytic Hydrogen Production
摘要
Abstract
Exploring economical and efficient photocatalysts for hydrogen production is of great significance for alleviating the energy and environmental crisis. In this study, 3D In2O3 nanostructures with appropriate self-assembly degrees were obtained using a facile hydrothermal strategy. To study the significance of 3D In2O3 nanostructures with appropriate self-assembly degrees in photocatalytic hydrogen production, the photocatalytic performances of samples were evaluated based on the amount of hydrogen gas release under visible-light irradiation (λ> 400 nm) and simulated solar light illumination. Interestingly, the 3D In2O3-150 nanostructured photocatalyst (hydrothermal temperature was 150 °C, denoted as In2O3-150) exhibitedextremely superior photocatalytic hydrogen evolution activity, which may have been caused by their unique structure to improve light reflection and gas evolution. The special structure can enhance light harvesting and induce more carriers to participate in photocatalytic hydrogen production. Despite possessing similar 3D nanostructures, the In2O3-180 photocatalyst exhibited poor photocatalytic activity. This may have been caused by the high self-assembly degree, which can hinder light irradiation and isolate a portion of the water. In addition, the 3D nanostructures could effectively make uniform the carrier migration direction, which is from the interior to the rod end. However, the direction of carrier migration of the In2O3-110 photocatalyst could transfer in various directions, whereas the In2O3-130 photocatalyst could transfer to both ends of the rod. This might cause partial migration to counteract each other. The compact cluster rod-like structure of In2O3-180 might prevent the light from exciting the carrier effectively. Through a photocatalytic recycling test, the 3D In2O3-150 nanostructured photocatalyst exhibited outstanding photochemical stability. This work highlights the importance of controlling the self-assembly degree of 3D In2O3 nanostructures and explores the performances of 3D In2O3 nanostructured photocatalysts in hydrogen production under visible light and simulated solar light.关键词
In2O3/三维纳米结构/自组装/光催化活性/制氢Key words
In2O3/3D nanostructures/Self-assembly/Photocatalytic activity/Hydrogen production分类
化学化工引用本文复制引用
陈锐杰,李娣,方振远,黄元勇,罗必富,施伟东..In2O3三维纳米结构的控制合成及高效光解水产氢活性研究[J].物理化学学报,2020,36(3):30-37,8.基金项目
The project was supported by the National Natural Science Foundation of China (21878129, 21522603, 21477050). 国家自然科学基金(21878129, 21522603, 21477050)资助项目 (21878129, 21522603, 21477050)