| 注册
首页|期刊导航|化工学报|基于数据驱动的卷积神经网络电容层析成像图像重建

基于数据驱动的卷积神经网络电容层析成像图像重建

孙先亮1 李健1,2 韩哲哲1 许传龙1

化工学报2020,Vol.71Issue(5):2004-2016,13.
化工学报2020,Vol.71Issue(5):2004-2016,13.DOI:10.11949/0438-1157.20200021

基于数据驱动的卷积神经网络电容层析成像图像重建

Data-driven image reconstruction of electrical capacitance tomography based on convolutional neural network

孙先亮1 1李健1,2 1韩哲哲1 2许传龙11

作者信息

  • 1. 东南大学能源与环境学院火电机组振动国家工程研究中心,江苏 南京210096
  • 2. 东南大学复杂工程系统测量与控制教育部重点实验室,江苏南京210096
  • 折叠

摘要

Abstract

A data-driven image reconstruction method based on convolutional neural networks is proposed for electrical capacitance tomography (ECT). According to the characteristics of the flow patterns of gas-solid two-phase flow, 60000 sets of particle distribution images are randomly generated by numerical simulation and the corresponding capacitance vectors are calculated by the finite element method, thereby creating a "capacitance vector-particle distribution" dataset. Then a convolutional neural network model is developed to learn and train the training dataset. The training result is verified and evaluated with the testing dataset. Further, static experiments and fluidized bed measurement experiments are performed on the ECT image reconstruction with the obtained convolutional neural network model. Simulation and experimental results show that the established convolutional neural network can well reconstruct ECT images and can be directly used for particle concentration distribution measurement in a fluidized bed.

关键词

卷积神经网络/电容层析成像/图像重建/颗粒浓度分布

Key words

convolutional neural network/electrical capacitance tomography/image reconstruction/particle concentration distribution

分类

能源科技

引用本文复制引用

孙先亮1,李健1,2,韩哲哲1,许传龙1..基于数据驱动的卷积神经网络电容层析成像图像重建[J].化工学报,2020,71(5):2004-2016,13.

基金项目

国家自然科学基金项目(51676044) (51676044)

江苏省自然科学基金项目(BK20190366) (BK20190366)

中央高校基本科研业务费专项(2242019k30017) (2242019k30017)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文