| 注册
首页|期刊导航|南京航空航天大学学报(英文版)|基于深度学习的离场航空器滑行时间预测

基于深度学习的离场航空器滑行时间预测

李楠 焦庆宇 朱新华 王少聪

南京航空航天大学学报(英文版)2020,Vol.37Issue(2):232-241,10.
南京航空航天大学学报(英文版)2020,Vol.37Issue(2):232-241,10.

基于深度学习的离场航空器滑行时间预测

Prediction of Departure Aircraft Taxi Time Based on Deep Learning

李楠 1焦庆宇 1朱新华 2王少聪3

作者信息

  • 1. 中国民航大学空中交通管理学院,天津300300,中国
  • 2. 中国民航大学经济与管理学院,天津300300,中国
  • 3. 中国民航环境与可持续发展研究中心,天津300300,中国
  • 折叠

摘要

Abstract

With the continuous increase in the number of flights,the use of airport collaborative decision?making(A?CDM)systems has been more and more widely spread. The accuracy of the taxi time prediction has an important effect on the A?CDM calculation of the departure aircraft's take?off queue and the accurate time for the aircraft block?out. The spatial?temporal?environment deep learning(STEDL)model is presented to improve the prediction accuracy of departure aircraft taxi?out time. The model is composed of time?flow sub?model (airport capacity,number of taxiing aircraft,and different time periods),spatial sub?model (taxiing distance) and environmental sub?model (weather,air traffic control,runway configuration,and aircraft category). The STEDL model is used to predict the taxi time of departure aircraft at Hong Kong Airport and the results show that the STEDL method has a prediction accuracy of 95.4%. The proposed model also greatly reduces the prediction error rate compared with the other machine learning methods.

关键词

航空运输/滑行时间/深度学习/场面运行/卷积神经网络

Key words

air transportation/taxi time/deep learning/surface movement/convolutional neural network(CNN)

分类

交通工程

引用本文复制引用

李楠,焦庆宇,朱新华,王少聪..基于深度学习的离场航空器滑行时间预测[J].南京航空航天大学学报(英文版),2020,37(2):232-241,10.

基金项目

This work was supported by the Na?tional Natural Science Foundation of China(Nos.U1833103, 71801215) (Nos.U1833103, 71801215)

the China Civil Aviation Environment and Sus?tainable Development Research Center Open Fund(No.CES?CA2019Y04). (No.CES?CA2019Y04)

南京航空航天大学学报(英文版)

OACSCDCSTPCD

1005-1120

访问量0
|
下载量0
段落导航相关论文