| 注册
首页|期刊导航|东南大学学报(英文版)|一种多尺度卷积自编码网络及其在滚动轴承故障诊断中的应用

一种多尺度卷积自编码网络及其在滚动轴承故障诊断中的应用

丁云浩 贾民平

东南大学学报(英文版)2019,Vol.35Issue(4):417-423,7.
东南大学学报(英文版)2019,Vol.35Issue(4):417-423,7.DOI:10.3969/j.issn.1003-7985.2019.04.003

一种多尺度卷积自编码网络及其在滚动轴承故障诊断中的应用

A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings

丁云浩 1贾民平1

作者信息

  • 1. 东南大学机械工程学院,南京211189
  • 折叠

摘要

Abstract

Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3% and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with waditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.

关键词

故障诊断/深度学习/卷积自编码网络/多尺度卷积核/特征提取

Key words

fault diagnosis/deep learning/convolutional auto-encoder/multi-scale convolutional kernel/feature extraction

分类

机械制造

引用本文复制引用

丁云浩,贾民平..一种多尺度卷积自编码网络及其在滚动轴承故障诊断中的应用[J].东南大学学报(英文版),2019,35(4):417-423,7.

基金项目

The National Natural Science Foundation of China (No.51675098). (No.51675098)

东南大学学报(英文版)

1003-7985

访问量0
|
下载量0
段落导航相关论文