| 注册
首页|期刊导航|可再生能源|基于LSTM循环神经网络的风力发电预测

基于LSTM循环神经网络的风力发电预测

王炜 刘宏伟 陈永杰 郑楠 李政 纪项钟 于广亮 康健

可再生能源2020,Vol.38Issue(9):1187-1191,5.
可再生能源2020,Vol.38Issue(9):1187-1191,5.

基于LSTM循环神经网络的风力发电预测

Wind power forecast based on LSTM cyclic neural network

王炜 1刘宏伟 2陈永杰 3郑楠 1李政 2纪项钟 2于广亮 1康健3

作者信息

  • 1. 国网陕西省电力公司经济技术研究院,陕西 西安 710001
  • 2. 华北电力大学, 北京 102200
  • 3. 华北理工大学, 河北唐山 063000
  • 折叠

摘要

Abstract

Large-scale wind power access to the power system will cause system frequency fluctuations. Using wind speeds at different altitudes,cosine values of wind direction, temperature,humidity,and air pressure to accurately predict wind power generation data is conducive to the development of a reasonable scheduling plan. Based on the requirements of AGC automatic power generation control, this paper selects a data collection point every 15 minutes,builds a large data set, and establishes a LSTM structure-based cyclic neural network ultra-short-term wind power generation prediction model, which is updated every 15 minutes according to the latest actual collected data. The data set implements a rolling update of the predictive network. Finally, the actual data of a certain wind field is verified. The verification results show that the algorithm has high prediction accuracy and good applicability to ultra-short-term wind power generation prediction.

关键词

风力发电/LSTM循环神经网络/滚动预测/超短期风力发电预测

Key words

wind power generation/ LSTM-RNN/ rolling prediction/ ultra-short-term wind power forecasting

分类

能源科技

引用本文复制引用

王炜,刘宏伟,陈永杰,郑楠,李政,纪项钟,于广亮,康健..基于LSTM循环神经网络的风力发电预测[J].可再生能源,2020,38(9):1187-1191,5.

基金项目

国网陕西省电力公司2019年科技项目(5226JY18000G). (5226JY18000G)

可再生能源

OA北大核心CSCDCSTPCD

1671-5292

访问量0
|
下载量0
段落导航相关论文