| 注册
首页|期刊导航|重庆邮电大学学报(自然科学版)|基于集成学习的复杂网络链路预测及其形成机制分析

基于集成学习的复杂网络链路预测及其形成机制分析

张淼 梁延研 黄相杰

重庆邮电大学学报(自然科学版)2020,Vol.32Issue(5):759-768,10.
重庆邮电大学学报(自然科学版)2020,Vol.32Issue(5):759-768,10.DOI:10.3979/j.issn.1673-825X.2020.05.008

基于集成学习的复杂网络链路预测及其形成机制分析

Link prediction and analysis of formation mechanism of complex networks based on ensemble learning

张淼 1梁延研 2黄相杰2

作者信息

  • 1. 北京理工大学 珠海学院,广东 珠海519085
  • 2. 澳门科技大学 资讯科技学院,澳门999078
  • 折叠

摘要

Abstract

To predict new or missing connections between a node and other existing nodes in the network, link ( edge) pre-diction has sparked increasing research interest in recent years. Recently, a variety of algorithms with different characteris-tics have been proposed to solve the problems of link prediction, for which each algorithm only takes into account a kind of information of the network and thus leads to a one-sided result. We present an ensemble learning method to combine all the single algorithms and take comprehensive account of the most information. An experiment succeeds on eight real networks, in which we extract 17 different features using local topological indexes, global topological indexes and recommended algo-rithm. The results suggest that AUC of ensemble learning are 2% to 17% higher than the best single algorithms and the highest score can be achieved 0.9624. Furthermore, we analyze the structure and formation mechanism of different types of networks according to the degree distribution and feature selection from random forest. We obtain some significant insights a-mong formation mechanism, network types and features. The features conducted from certain mechanisms or assumptions, are really reflecting the driven force of connection of node pairs, and therefore can be suitably used for link prediction.

关键词

集成学习/链路预测/复杂网络/形成机制

Key words

ensemble learning/link prediction/complex networks/formation mechanism

分类

信息技术与安全科学

引用本文复制引用

张淼,梁延研,黄相杰..基于集成学习的复杂网络链路预测及其形成机制分析[J].重庆邮电大学学报(自然科学版),2020,32(5):759-768,10.

基金项目

The Science and Technology Development Fund of Macau(0025/2018/A1,0019/2018/ASC,0008/2019/A1,0010/2019/AFJ,0025/2019/AKP) (0025/2018/A1,0019/2018/ASC,0008/2019/A1,0010/2019/AFJ,0025/2019/AKP)

重庆邮电大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1673-825X

访问量0
|
下载量0
段落导航相关论文