首页|期刊导航|应用数学|Banach空间中线性算子核逆的一致有界性与收敛性

Banach空间中线性算子核逆的一致有界性与收敛性OA北大核心CSCDCSTPCD

The Uniform Boundedness and Convergence for the Core Inverses of Linear Op erators in Banach Spaces

中文摘要英文摘要

本文主要研究Banach空间中线性算子核逆的一致有界性与收敛性之间的关系.首先证明核逆的一致有界性与收敛性的等价性,给出了核逆的表达式.其次,利用稳定扰动,证明核逆的稳定扰动与连续性是等价的.作为应用,我们还给出有限秩算子核逆的连续性特征,并给出扰动算子的核逆具有最简表达式的充分必要条件.

The main topic of this paper is the relationship between uniform boundedness and convergence of the core inverses of linear operators in Banach spaces. We first obtain the equivalence of the uniform boundedness and convergence for core inverse and we give the expression of core inverse. Secondly, we investigate the stable perturbation for the core inverse and prove that the stable perturbation and the continuity of the core inverse are equivalent. As applica…查看全部>>

赵亚媛;陈赛杰;朱兰萍;黄强联

扬州大学数学科学学院,江苏 扬州 225002扬州大学数学科学学院,江苏 扬州 225002扬州大学数学科学学院,江苏 扬州 225002扬州大学数学科学学院,江苏 扬州 225002

数理科学

核逆一致有界收敛广义逆稳定扰动

Core inversesUniform boundednessConvergenceGeneralized inverseStable perturbation

《应用数学》 2021 (1)

216-223,8

Supported by the National Natural Science Foundation of China(11771378,11871064,11971419)the Yangzhou University Foundation for Young Academic Leaders(2016zqn03)the Postgraduate Research and Practice Innovation Program of Yangzhou University(XKYCX19-057)

评论

您当前未登录!去登录点击加载更多...