| 注册
首页|期刊导航|应用数学|Banach空间中线性算子核逆的一致有界性与收敛性

Banach空间中线性算子核逆的一致有界性与收敛性

赵亚媛 陈赛杰 朱兰萍 黄强联

应用数学2021,Vol.34Issue(1):216-223,8.
应用数学2021,Vol.34Issue(1):216-223,8.

Banach空间中线性算子核逆的一致有界性与收敛性

The Uniform Boundedness and Convergence for the Core Inverses of Linear Op erators in Banach Spaces

赵亚媛 1陈赛杰 1朱兰萍 1黄强联1

作者信息

  • 1. 扬州大学数学科学学院,江苏 扬州 225002
  • 折叠

摘要

Abstract

The main topic of this paper is the relationship between uniform boundedness and convergence of the core inverses of linear operators in Banach spaces. We first obtain the equivalence of the uniform boundedness and convergence for core inverse and we give the expression of core inverse. Secondly, we investigate the stable perturbation for the core inverse and prove that the stable perturbation and the continuity of the core inverse are equivalent. As applications, we also give the continuity characterization for the core inverse of finite rank operators and derive the sufficient and necessary condition for the core inverse of the perturbed operator to have the simplest possible expression.

关键词

核逆/一致有界/收敛/广义逆/稳定扰动

Key words

Core inverses/Uniform boundedness/Convergence/Generalized inverse/Stable perturbation

分类

数理科学

引用本文复制引用

赵亚媛,陈赛杰,朱兰萍,黄强联..Banach空间中线性算子核逆的一致有界性与收敛性[J].应用数学,2021,34(1):216-223,8.

基金项目

Supported by the National Natural Science Foundation of China(11771378,11871064,11971419) (11771378,11871064,11971419)

the Yangzhou University Foundation for Young Academic Leaders(2016zqn03) (2016zqn03)

the Postgraduate Research and Practice Innovation Program of Yangzhou University(XKYCX19-057) (XKYCX19-057)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量4
|
下载量0
段落导航相关论文