| 注册
首页|期刊导航|物理化学学报|锂金属电池中的复合负极

锂金属电池中的复合负极

赵雨萌 任凌霄 王澳轩 罗加严

物理化学学报2021,Vol.37Issue(2):47-60,14.
物理化学学报2021,Vol.37Issue(2):47-60,14.DOI:10.3866/PKU.WHXB202008090

锂金属电池中的复合负极

Composite Anodes for Lithium Metal Batteries

赵雨萌 1任凌霄 1王澳轩 1罗加严1

作者信息

  • 1. 天津大学化工学院,天津300072
  • 折叠

摘要

Abstract

The applications of lithium-ion batteries have been limited because their energy density can no longer meet the requirements of an emerging energy society.Lithium metal batteries(LMBs)are being considered as potential candidate for next-generation energy storage systems owing to the high theoretical specific capacity and low electrochemical potential of lithium metal.However,the commercialization of LMB is limited due to several challenges,such as uncontrollable formation of dendrites,unstable solid electrolyte interface,and infinite anode volume change,which can lead to grievous catastrophe.In this study,several typical mechanisms of lithium dendrite formation and growth are summarized.The results suggest that a smaller current density,greater Li+transference number,higher mechanical strength of the electrolyte,and a more homogeneous distribution of Li+on the substrate are conducive to the uniform deposition morphology of lithium metal.In view of these results,combined with the researches on LMBs conducted in recent years,composite anodes can be summarized into three level from internal to external.(i)Internal composite of lithium metal anode:the scaffolds composited with lithium metal are classified as non-conductive(NC),electron-conductive(EC),ion-conductive(IC),and mixed ion and electron-conductive(MIEC)scaffolds.Composited with NC scaffolds,the tip effect can be weakened through the interaction between polar functional groups and Li+.The composite of lithium metal and EC scaffolds can effectively reduce the local current density,while IC scaffolds can increase the ion flux.However,the performance of LMBs may be hindered by the insulation of electrons or Li+at high rates.In comparison,MIEC scaffolds can provide fast ion/electron transfer channels for the deposition or dissolution of lithium metal,which is beneficial for the electrochemical performance of LMBs even at high rates.(ii)Internal composite of LMB:Compared with liquid electrolytes,solid-state electrolytes(SSEs)and quasi-solid-state electrolytes are much safer.However,their interfacial contact with lithium metal anodes has been seriously criticized.Lithium metal anodes can be composited with SSEs or quasi-solid-state electrolytes to optimize the interface contact performance and reduce the interface resistance,thereby promoting the development of solid-state batteries.(iii)Composite of internal environment and external operating conditions:Composited with external physical fields,such as electric fields,magnetic fields,and temperature fields,the distribution of Li+can be homogeneous and the initial nucleation process can be regulated.Overall,this review summarizes several composite anodes that have greatly optimized the performance of LMBs and highlights the potential of multi-level composites for applications in lithium metal anodes.

关键词

锂金属电池/锂枝晶/复合负极/内部结构/外界操作条件/多层次复合

Key words

Lithium metal battery/Lithium dendrite/Composite anode/Internal structure/External operating condition/Multi-level composite

分类

化学化工

引用本文复制引用

赵雨萌,任凌霄,王澳轩,罗加严..锂金属电池中的复合负极[J].物理化学学报,2021,37(2):47-60,14.

基金项目

The project was supported by the National Natural Science Foundation of China(51872196),the Natural Science Foundation of Tianjin,China(17JCJQJC44100),and the National Postdoctoral Program for Innovative Talents,China(BX20190232).国家自然科学基金(51872196),天津市自然科学基金(17JCJQJC44100)和国家创新人才博士后计划(BX20190232)资助项目 (51872196)

物理化学学报

OA北大核心CSCDCSTPCD

1000-6818

访问量0
|
下载量0
段落导航相关论文