| 注册
首页|期刊导航|中国电机工程学会电力与能源系统学报(英文版)|Renewable Scenario Generation Using Controllable Generative Adversarial Networks with Transparent Latent Space

Renewable Scenario Generation Using Controllable Generative Adversarial Networks with Transparent Latent Space

Ji Qiao Tianjiao Pu Xinying Wang

中国电机工程学会电力与能源系统学报(英文版)2021,Vol.7Issue(1):66-77,12.
中国电机工程学会电力与能源系统学报(英文版)2021,Vol.7Issue(1):66-77,12.DOI:10.17775/CSEEJPES.2020.00700

Renewable Scenario Generation Using Controllable Generative Adversarial Networks with Transparent Latent Space

Renewable Scenario Generation Using Controllable Generative Adversarial Networks with Transparent Latent Space

Ji Qiao 1Tianjiao Pu 1Xinying Wang1

作者信息

  • 1. China Electric Power Research Institute,Haidian District,Beijing 100192,China
  • 折叠

摘要

关键词

Renewable scenario generation/deep learning/generative adversarial networks/neural network/transparent latent spacer

Key words

Renewable scenario generation/deep learning/generative adversarial networks/neural network/transparent latent spacer

引用本文复制引用

Ji Qiao,Tianjiao Pu,Xinying Wang..Renewable Scenario Generation Using Controllable Generative Adversarial Networks with Transparent Latent Space[J].中国电机工程学会电力与能源系统学报(英文版),2021,7(1):66-77,12.

基金项目

This work was supported in part by the National Key Research and Development Program of China under Grant 2018AAA0101505. ()

中国电机工程学会电力与能源系统学报(英文版)

OACSCDCSTPCDEISCI

2096-0042

访问量0
|
下载量0
段落导航相关论文