| 注册
首页|期刊导航|南京航空航天大学学报(英文版)|含椭圆夹杂或裂纹的圆柱扭转问题研究

含椭圆夹杂或裂纹的圆柱扭转问题研究

黄成 殷茂淑 祁霄 郭魂

南京航空航天大学学报(英文版)2021,Vol.38Issue(1):96-105,10.
南京航空航天大学学报(英文版)2021,Vol.38Issue(1):96-105,10.

含椭圆夹杂或裂纹的圆柱扭转问题研究

Torsion of Circular Shaft with Elliptical Inclusions or Cracks

黄成 1殷茂淑 2祁霄 1郭魂1

作者信息

  • 1. 常州工学院航空与机械工程学院,常州 213032,中国
  • 2. 上海空间电源研究所物理电源事业部,上海 200240,中国
  • 折叠

摘要

Abstract

This paper proposes a straightforward and concise approach to analyze the Saint-Venant's torsion of a circular shaft containing multiple elliptical inclusions or cracks based on the complex variable method. The complexpotentials are first derived for the shaft with N elliptical inclusions by introducing Faber series expansion,and then the shear stresses and torsional rigidity are calculated. When the inclusions degenerate into cracks,the solutions for the intensity factors of stress are obtained. Finally,several numerical examples are carried out to discuss the effects of geometry parameters,different shear modulus ratios and array-types of the elliptical inclusions/cracks on the fields of stresses. The obtained results show that the proposed approach has advantages such as high accuracy and good convergence.

关键词

Saint-Venant扭转/复势函数方法/Faber级数

Key words

Saint-Venant's torsion/complex variable method/Faber series

分类

数理科学

引用本文复制引用

黄成,殷茂淑,祁霄,郭魂..含椭圆夹杂或裂纹的圆柱扭转问题研究[J].南京航空航天大学学报(英文版),2021,38(1):96-105,10.

基金项目

This work was supported by the Na?tional Natural Science Fund of China(No.11802040)and the Natural Science Foundation of the Jiangsu Higher Educa?tion Institutions of China(No.18KJB130001). (No.11802040)

南京航空航天大学学报(英文版)

OACSCDCSTPCD

1005-1120

访问量0
|
下载量0
段落导航相关论文